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ABSTRACT
The coronavirus disease 2019 (COVID-19) break-out in late Decem-
ber 2019 has spread rapidly worldwide. Existing studies have shown
that there is a significant correlation between large-scale human
movements and the spread of the epidemic. However, there is a lack
of quantification of these correlations, and it is still challenging to
predict the spread of the epidemic at early stage. In this paper, we
address this issue by conducting a statistical analysis on the spatio-
temporal relationship between human mobility and the epidemic
spread. Specifically, we proposed an improved SEIR model to adapt
to the COVID-19 epidemic, so that we can predict the spread of the
epidemic at the early stage using human mobility data and the early
confirmed cases. We evaluated our model in various provinces and
cities in China, and the results are superior to various baselines,
verifying the effectiveness of the method.

CCS CONCEPTS
• Human-centered computing → Collaborative and social com-
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1 INTRODUCTION
In December 2019 an outbreak of atypical pneumonia [coronavirus
disease 2019 (COVID-19)] has infected more than 70 million people
and causedmore than 1.5 million deaths by December 2020. Because
the outbreak coincided with chunyun, the annual period of mass
migration for the Spring Festival holidays that was to begin on
January 25, 2020. The disease quickly spread to all provinces of
China, and then affected 215 countries and regions in the world.
In this situation, we need to use modeling methods and available
human mobility data to predict disease outbreaks[9], then provide
scientific guidance for human interventions.

Since the classic SEIR(Susceptible-Exposed-Infected-Removed)
cannot fit the epidemic situation in China well, many studies have
proposed modification to the SEIR model. However, existing studies
generally used many excessive parameters to model human inter-
ventions, which might inevitably introduce noises and uncertainties
to the prediction[4, 17, 18]. Therefore, we introduced only one new
parameter to the SEIR model to express the degree of protection of
the intervention measures to the susceptible population. We can
easily study the correlation between this parameter and human
mobility data. We found that the value of this parameter has a linear
relationship with human mobility data, which allows us to solve
the parameters through human mobility data without parameter
fitting.

Our approach differs from prior work linking human mobility
and disease spread in terms of: our use of travel intensity data,
which represents the attributes of the region itself, not the inter-
action between regions[10, 19]; our focus on aggregate population
flows rather than individual tracking[3, 17]; and our modified SEIR
modeling approach.

2 DATA COLLECTION
The data used in this paper consists of two parts:

Human mobility data provided by Baidu[2], which includes:
(1) Inflow/outflow population intensity of each city/province,

which reflects the number of inflow/outflow population of this
city/Province;

(2) Urban travel intensity, which reflects the ratio of the popula-
tion traveling in a city to the total population of the city;

(3) Inter regional migration scale index data. It reflects the ratio
of the number of people flowing from area A to area B to the total
number of people flowing out of area A.

https://doi.org/10.1145/1122445.1122456
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Official confirmed case data(city level and province level) until
the date of July 2, 2020, released by the ChinaHealth Commission[15]:
It contains

• Daily new confirmed cases.
• Daily cured cases.
• Daily deaths.
• Daily new suspected cases.

3 HUMAN MOBILITY DATA ANALYSIS
In this section, we analyze humanmobility data. The non-pharmaceutical
interventions taken by the Chinese government due to the epidemic
have a significant impact on human mobility, and human mobility
in turn affects the spread of the epidemic.

3.1 Human Intervention Changed Human
Mobility

We conduct visual processing and statistical analysis for human
mobility data. Aims to discover what has changed in human behav-
ior due to the human intervention In order to control the spread
of the virus, the Chinese government has taken unprecedented
intervention strategies. As a result, the intensity of population
movement between provinces has dropped by 67% , and the urban
travel intensity has dropped by 37%(Figure 1).

Figure 1: Changes in travel intensity due to the intervention
for epidemic. (a. the intensity of provincial outflow; b. the
intensity of provincial inflow; c. the intensity of intra city
travel. Wuhan cordon sanitaire: January 23; Spring Festival:
January 25, 2020. Please note that the date of 2019 has been
adjusted relative to the Spring Festival of that year (February
3, 2019))

3.2 Human Mobility Drives the Epidemic
In this section, we analyze the correlation between different types
of human mobility data and the epidemic. And we can find out
which data can be used to predict the spread of the epidemic.

3.2.1 The Impact of Migrants FromHubei/Wuhan on the Epidemic in
Other Regions. Since 31 December 2019, cases have been exported
to other Chinese cities and provinces from Wuhan, the capital
of Hubei province in China. We found that the Migration scale
number from Wuhan is consistent with the number of confirmed
cases. This conclusion is the same as that of Jia et al. (using mo-
bile phone data)[10] and Kraemer et al. (using detailed case data
including travel history)[11]. While Wuhan City, as the capital of
Hubei Province(the data from Wuhan to Hubei were excluded), has
a more significant impact on other regions than Hubei Province
(Table 1).

Table 1: Correlation between migration scale index and num-
ber of confirmed cases

Migration from Migration to R-value P-value Standard Error 𝑅2

Wuhan cities 0.970 3.55E-62 5.770 0.941
Wuhan provinces 0.801 1.05E-07 35.788 0.642
Hubei cities 0.683 4.80E-15 6.853 0.467
Hubei provinces 0.801 1.06E-07 11.147 0.642

3.2.2 The Impact of the Region’s Own Human Mobility on the Local
Epidemic. We investigate the impact of the inflow intensity, outflow
intensity and intensity of intra-city travel on the epidemic. We
found that provinces with more active interactions with the outside
tend to havemore severe epidemics, but active cities do not (Figure 2
). We think this is because the active provinces will have more
interactions with Wuhan (where the epidemic broke out), but the
active cities may only interact more actively with neighboring
cities.

Another counter-intuitive phenomenon is the weak correlation
between the intensity of intra-city travel and the number of con-
firmed cases (see Figure 2 ). The reasons for this are various. On
the one hand, the cities’ epidemic is mainly affected by the popula-
tion of Wuhan it receives; On the other hand, in cities with severe
epidemics, people tend to adopt stricter restrictions, and intra-city
travel also affected by other factors such as education level and
geographic factors[4].

3.2.3 Conclusion. By analyzing these human mobility data, we
found that the non-pharmaceutical interventions in China have
significant effects:

(1)There is a correlation between human mobility data and the
spread of the epidemic, the human mobility data of city level has
stronger correlation with epidemic than that of province level.

(2)In China, the main factor affecting the severity of the epidemic
in a region is the number of people from Wuhan it receives before
the cordon sanitaire.

(3)There is no clear correlation between the intensity of intra-city
travel and the severity of the epidemic in the city.

Figure 2: Joint distribution of travel intensity and the number
of confirmed cases

4 A MODIFIED SEIR
We predict future trends based on early data on the epidemic. Firstly,
we propose a modified SEIR model, and take the initial confirmed
case data as the input to calculate the model parameters in different
regions. Then we find the linear relationship between the model
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parameters and the human mobility data. In the prediction, we use
the human mobility data to calculate the value of the model param-
eters, and then use the model to predict the number of confirmed
cases.

4.1 Mathematical Model
Here, we use the classic SEIR ordinary differential equations to
model the dynamics of disease outbreaks in China, which will not
add parameters to the equations. The transmission dynamics are
governed by the following system of equations:

𝑆
′
= −𝛽𝑆𝐼/(𝑆 + 𝐸 + 𝐼 + 𝑅)

𝐸
′
= −𝛽𝑆𝐼/(𝑆 + 𝐸 + 𝐼 + 𝑅) − 𝜔𝐸

𝐼
′
= 𝜔𝐸 − 𝛾𝐼

𝑅
′
= 𝛾𝐼

(1)

Where "’" is the derivative with respect to time, and 𝛽 denoted
the coefficient of infection rate; 𝜔 = 1/𝑇𝑒 , 𝜔 denoted the transition
rate of exposed individuals to the infected class, 𝑇𝑒 denoted the
average latency; and𝛾 = 1/𝑇𝑖 ,𝛾 denoted the removed rate of infected
individuals, 𝑇𝑖 denoted the mean duration from onset to hospital
admission (In China, hospitalization means isolation, therefore, we
think that hospitalized patients are no longer infectious[5]). We
believe that when using SEIR to model the epidemic in an area,
due to the effective human interventions, the initial susceptible
population (𝑆0) is no longer equal to the total population of the
area, but equal to effective-size-of-the-populations-at-risk (𝑁𝑒 𝑓 𝑓 ).
That is:

𝑆0 = 𝑁𝑒 𝑓 𝑓 (2)
We assume that N𝑒 𝑓 𝑓 is a certain percentage of the total population:

𝑁𝑒 𝑓 𝑓 = 𝑞𝑁 (3)
Where N denoted the population of a region; and q denoted the pro-
portion of the initial susceptible population to the total population
due to the effective non-pharmacological interventions.

4.2 Result
In this study, we set the 𝑇𝑒=5.2 days and 𝑇𝑖=12.5 days[12]. We try
to predict the trend of the epidemic through the early information,
so we did not adopt time-dependent parameters, which requires
long-term data. We used the data from January 19th to January
26th to estimate the 𝛽 value of 11.37 using the least square method
.

We believe that because of the differences in human mobility
in different regions, their effective-size-of-the-populations-at-risk
proportions (q) are also different. We use the least square method
to estimate the value of q in different cities and provinces, and
we found that the value of q has a linear relationship with human
mobility data(see Figure 3):

𝑞 ∝ 𝑚

𝑁
(4)

Where m denoted the human mobility data, and N, the total
population of a region. We found that there are six kinds of human
mobility data that satisfy this relationship (Table 2 ), which means
that we can actually estimate a parameter value (q) in the SEIR

Table 2: Correlation between q and human mobility data

Human mobility data R-value P-value Standard Error 𝑅2

Outflow intensity(Province) 0.577 0.001 2.922 0.333
Inflow intensity(Province) 0.405 0.029 2.379 0.164
Wuhan to cities 0.955 7.55E-43 0.919 0.912
Wuhan to provinces 0.734 5.97E-06 5.091 0.538
Hubei to cities 0.222 0.121 9.904 0.049
Hubei to provinces 0.586 0.001 17.073 0.343

Table 3: Prediction results with different human mobility
data

method R-value P-value Standard Error 𝑅2

fit q (province level) 0.760 2.17E-07 0.086 0.589
fit q (city level) 0.508 0.031 0.156 0.318
using outflow intensity (province level) 0.764 1.49E-07 0.104 0.595
using inflow intensity (province level) 0.771 2.78E-08 0.079 0.604
using migration from Wuhan to cities 0.515 0.030 0.155 0.325

model through human mobility data. In the Figure 3, we show two
examples of the linear relationship, and in Figure 3.b. Pearson corre-
lation coefficient has a downward trend in the long run (similar to
previous study from other data[10]), but the correlation is still high.
Take advantage of this correlation to estimate q, we do not need
long-term data of laboratory-confirmed cases to fit the differential
equation.

Figure 3: The linear relationship between q and human mo-
bility data

Table 3 shows the statistical analysis on the prediction results.
We used different kinds of human mobility data to calculate the q
value, then predict the number of confirmed cases, and compare it
with the q value fitted by the least square method(as baseline).

We found that the migration from Wuhan to cities/provinces
showed the strongest correlation with the number of confirmed
cases Table 1) and q (Table 2). However, when prediction, the provin-
cial level inflow and outflow data showed a stronger correlation
with the real number of confirmed cases (Table 3). Practically, the
correlation distribution between the outflow/inflow intensity of
each province and the number of confirmed cases is more uniform,
so it shows better effect in forecasting.

5 RELATEDWORK
SEIR model divides all people in a region into four categories: sus-
ceptible, exposed, infected and removed. While under the effective
intervention measures taken by China, the primitive SEIR cannot
adapt well to the epidemic in China. Therefore, improvements to the
SEIR model[6, 19] can make the model more applicable for actual
conditions and can also research the impact of human interventions.
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For example, many studies have added asymptomatic infectious
or quarantined populations to the model[1, 7, 14, 16]. However,
all these extensions lead to the proliferation of free model param-
eters, and thus require orders of magnitude more data to fit the
model than does the basic three parameter SEIR disease process
formulation[8]. In the early stages of the epidemic, accurate data on
infected persons may be difficult to obtain, and insufficient research
on asymptomatic infected persons makes it difficult to estimate
model parameters[13].

There are many existing studies using human mobility data to
predict epidemic, but most of existing methods only focus on a
specific area. For example, Boston metropolitan area[1], ten US
metropolitan areas[3], Spain[14], Beijing[16], Wuhan[18], Hubei,
Zhejiang and whole China[19]. And some of them require addi-
tional fine-grained human mobility data[1][3], international flight
data[18], long term (40 days) confirmed cases data[12]. Our method
is different from the above methods in twofold: First, we propose a
general method and apply it to 367 cities and 31 provinces in China.
Second, we only use the data in early stage (2 weeks) to carry out
long-term predictions.

6 CONCLUSION AND FUTUREWORK
In this study, we investigated the relationship between different
types of human mobility data and disease transmission. After that,
we proposed a modified SEIR model, in which human mobility data
can be used to solve the parameters of the differential equation,
which is a different approach from previous studies. Our forecast
results are superior to various baselines.

Contrary to the intuition, we found that there is less correlation
between intra-city travel intensity and the number of confirmed
cases. We also find that the outflow intensity and inflow inten-
sity of a province are consistent, and they are strongly correlated
with the number of confirmed cases, just like the migration from
Wuhan/Hubei. This may mean that immigrants from Wuhan and
Hubei have gone to various provinces in China with equal probabil-
ity. The human dynamics behind this will be a promising research
direction in the future.
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